UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

FACULTAD DE INGENIERIA

PROGRAMA DE LA UNIDAD DE APRENDIZAJE:

ANALISIS Y DISEÑO DE ALGORITMOS

DES:	Ingeniería							
Programa académico	Maestría en Ingeniería en Computación							
Tipo de materia (Obli/Opta):	Electiva							
Clave de la materia:	MICE2302							
Semestre:	1							
Área en plan de estudios (G y E):	G, E							
Total de horas por semana:	6							
Teoría: Presencial o Virtual	2							
Laboratorio o Taller:	0							
Prácticas:	2							
Trabajo extra-clase:	2							
Créditos Totales:	6							
Total de horas semestre (x 16 sem):	64							
Fecha de actualización:	Agosto 2023							
Prerrequisito (s):	Ninguno							

DESCRIPCIÓN DEL CURSO:

El curso aporta los principios fundamentales del análisis y diseño de algoritmos para comprender como se aplican en una amplia gama de problemas. Permite el estudio de diversos tipos de problemas y el diseño y/o aplicación de algoritmos para resolverlos de manera eficiente.

COMPETENCIAS A DESARROLLAR:

INTELIGENCIA ARTIFICIAL. Aplica la Inteligencia Artificial para resolver problemas en los sectores industrial, gubernamental, académico y social bajo esquemas de colaboración ética y multidisciplinaria.

GESTIÓN DE PROYECTOS. Coordina y administra de forma responsable, proyectos que atienden criterios de sustentabilidad para contribuir a la mejora de la calidad de vida.

GESTIÓN DEL CONOCIMIENTO. Demuestra conocimientos y habilidades para la búsqueda, análisis crítico, síntesis y procesamiento de información para su transformación en conocimiento, con actitud ética.

COMUNICACIÓN CIENTÍFICA. Difunde con responsabilidad ética y social el conocimiento científico, tecnológico, artístico y/o humanístico que produce de forma objetiva para aportar ideas y hallazgos científicos.

INVESTIGACIÓN. Desarrolla investigación original, tecnología y/o innovaciones en procesos, servicios o productos que contribuyan a la solución de problemas, mejoren la convivencia, generen oportunidades para el desarrollo sustentable y propicien una mejor calidad de vida.

DOMINIOS	OBJETOS DE ESTUDIO	RESULTADOS DE APRENDIZAJE	METODOLOGÍA	EVIDENCIAS
Soluciona problemas en diversas áreas del conocimiento aplicando las ciencias computacionales Comprueba los resultados obtenidos de un prototipo contra las investigaciones recientes a fin de identificar nuevas contribuciones	Introducción al Diseño y Análisis de Algoritmos. 1.1. Problemas, algoritmos y complejidad computacional 1.2. Definiciones de eficiencia. 1.1.1. Tiempo de ejecución en el peor caso. 1.1.2. Tiempo	Aplica los fundamentos de ingeniería y de ingeniería especializada en la identificación, formulación, análisis y resolución de problemas	 Para cada unidad, se presenta una introducción por parte del maestro. Para cada unidad, el maestro deja una tarea donde se aplican los conceptos vistos en clase para la resolución de problemas. La tarea 	Reportes de investigaciónProyectos

Accede a diferentes fuentes de información (journals o revistas científicas, bases de datos, índices, etc.) de calidad.

Analiza y recupera información pertinente mediante diversas estrategias de búsqueda de datos científicos.

Evalúa de manera crítica la información, considerando su calidad y pertinencia.

Se comunica en forma oral y escrita con propiedad, relevancia, oportunidad y ética.

Aplica los elementos fundamentales de la redacción científica.

Interpreta y expresa ideas, sentimientos, teorías y corrientes de pensamiento con un enfoque ecuménico (universal).

Muestra un desempeño abierto, sencillo, tolerante, congruente y objetivo al comunicar el saber científico

Aplica procesos metodológicos para el desarrollo de investigación o intervención, en congruencia con el planteamiento y objetivos del proyecto a abordar.

Muestra habilidad para la observación del fenómeno u objeto de estudio en su campo atencional polinómico.

- 1.3. Orden de crecimiento asintótico.
 - 1.3.1. Notación O grande 1.3.2. Notación Ω grande
 - 1.3.3. Notación θ
- 1.4. Ejemplos de tiempos comunes de ejecución.
 - 1.4.1. Tiempo lineal.
 - 1.4.2. Tiempo O(n Log n).
 - 1.4.3. Tiempo cuadrático.
 - 1.4.4. Tiempo cúbico.
 - 1.4.5. Tiempo O(n^k)
 - 1.4.6. Más allá del tiempo polinómico.
 - 1.4.7. Tiempo sublineal.
- 1.5. Tipos de problemas según su complejidad
 - 1.5.1. Máquinas de Turing determinísticas y la Clase P
 - 1.5.2. Problemas No Determinísticos y la clase NP
 - 1.5.3. ¿P=NP?
 - 1.5.4. Transformaciones polinomiales y los problemas NP-Completos
 - 1.5.5. Problemas NP-Hard
- Algoritmos "Divide y Vencerás" (Divide and Conquer)
 - 2.1. Relaciones de Recurrencia
 - 2.2. Métodos para resolver recurrencias
 - 2.2.1. Arboles de Recursiones
 - 2.2.2. El método Maestro
 - 2.3. El modelo "Divide y Vencerás"
 - 2.4. Algoritmo MergeSort
 - 2.5. Algoritmo para encontrar el par de puntos mas cercano
 - 2.6. Algoritmo de la multiplicación
- Teoría de Grafos
 - 3.1. Definiciones básicas y aplicaciones.
 - 3.1.1. Representación de Grafos
 - 3.1.1.1. Matriz de adyacencia

- complejos con el fin de alcanzar conclusiones fundamentadas.
- Realiza
 investigaciones de
 problemas
 complejos por
 métodos que
 incluyen
 experimentos
 apropiados,
 análisis e
 interpretación de
 datos y síntesis de
 la información con
 el fin de llegar a
 conclusiones
 válidas
- requiere que el alumno revise las técnicas y concepto vistos en clase, aclare dudas y aplique las técnicas ya sea manualmente o las implemente utilizando un lenguaje de programación.
- La discusión y el análisis se propician a partir del planteamiento de una situación problemática, donde el estudiante aporte alternativas de solución o resolver un ejercicio en el que aplique conceptos ya analizados.
- e In algunas unidades el maestro muestra directamente en una computadora, posiblemente con la ayuda de un proyector, cómo se implementan las técnicas vistas en clase usando un lenguaje de programación.
- Material de Apoyo didáctico: Recursos
- Talleres para realizar ejercicios
- Materiales gráficos: artículos, libros, diccionarios, etc.
- Cañón
- Rotafolio
- Pizarrón, pintarrones
- Proyector de acetatos
- * Plataforma

	3.1.1.2. Listas		
	adyacentes		
	3.1.2. Grafos No		
	Dirigidos		
	3.1.3. Caminos		
	3.1.4. Ciclos		
	3.1.5. Árboles		
	3.2. Conectividad		
	3.3. Búsqueda en Anchura (BFS)		
	3.4. Búsqueda en		
	Profundidad (DFS)		
	3.5. Grafos Bipartitas		
	(probando la		
	característica de		
	Bipartición)		
	3.6. Grafos Acíclicos		
	Dirigidos (DAG's) y el		
	Orden Topológico		
4.	Algoritmos Ambiciosos		
4.	(Greedy)		
	4.1. La estrategia "Greedy"		
	4.2. Arboles de Mínima		
	Expansión		
	4.3. Códigos de Huffman		
	4.4. Calendarización de		
	Intervalos		
	4.5. Caminos más cortos en		
	grafos (Algoritmo de Dijkstra)		
	4.6. Algoritmo de Kruskal		
	4.7. Closterizaciones		
	(Clustering)		
5.	Programación Dinámica.		
	5.1. Principios de		
	programación dinámica. 5.1.1. Memorización		
	5.1.2. Iteración sobre los		
	subproblemas.		
	5.2. Calendarización de		
	Intervalos Ponderados		
	5.3. Método de Mínimos		
	cuadrados		
	segmentados.		
	5.4. El problema de la		
	subsecuencia más larga. 5.5. Revisitando el problema		
	de los caminos más		
	cortos en grafos.		
	5.6. El problema de la		
	mochila (Knapsack)		
	5.7. Alineación de		
	secuencias.		
	Eluina on Dadas		
6.	Flujos en Redes		
	6.1. Flujos máximos y cortes mínimos en una red.		
I	minimos on una rou.		

60 1	El problema de fluia		
	El problema de flujo		
	máximo y el algoritmo de		
	Ford-Fulkerson.		
6	.2.1. Seleccionando		
	buenos caminos		
	de aumentación.		
6.3. F	El problema del		
	Apareamiento Bipartita		
	(Bipartite Matching).		
	Caminos desunidos en		
	grafos dirigidos y no		
	dirigidos.		
	. 3		
7. Algorit	tmos de Aproximación		
	El problema de		
	selección de centros.		
	El problema de la		
	cobertura de conjuntos.		
	Método de asignación		
	de precios: Cobertura de		
	•		
	vértices.		
	Programación lineal.		
	.4.1. El método Simplex		
El problema	a del agente viajero		

FUENTES DE INFORMACIÓN	EVALUACIÓN DE LOS APRENDIZAJES
1. Algorithm Design Jon Kleinberg & Eva Tardos. Pearson 2021.	Tareas escritas 25%
2. Computers and Intractability: A Guide to the Theory on NP-Completeness.	Reportes de investigación 25%
1979	Proyectos 50%
3. Algorithms S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani. 2006.	
4. Introduction to Algorithms Cormen, Leiserson, Rivest, & Stein. 4ta edicion.	
2022.	

CRONOGRAMA

Objetos de aprendizaje	Semanas															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1.Introducción al Diseño y Análisis de																
Algoritmos																
2. Algoritmos "Divide y Vencerás"																
3. Teoría de Grafos																
4. Algoritmos Voraces (Greedy)																
5. Programación Dinámica																
6. Flujos en Redes																
7. Algoritmos de Aproximación																